
0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2824280, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

1

Double MAC on a DSP: Boosting the Performance
of Convolutional Neural Networks on FPGAs

Sugil Lee∗†, Daewoo Kim∗, Dong Nguyen∗ and Jongeun Lee∗†
∗School of ECE, UNIST, Ulsan, South Korea

†Neural Processing Research Center, Seoul National University, Seoul, Korea
jlee@unist.ac.kr

Abstract—Deep learning such as Convolutional Neural Net-
works (CNNs) are an important workload increasingly demand-
ing high-performance hardware acceleration. One distinguishing
feature of deep learnng workload is that it is inherently resilient
to small numerical errors and works very well with low precision
hardware. Thus we propose a novel method, called Double
MAC, to theoretically double the computation rate of CNN
accelerators by packing two multiply-and-accumulate (MAC)
operations into one DSP block of off-the-shelf FPGAs. There are
several technical challenges, which we overcome by exploiting the
mode of operation in the CNN accelerator. We have validated
our method through FPGA synthesis and Verilog simulation,
and evaluated our method by applying it to the state-of-the-
art CNN accelerator. We find that our Double MAC approach
can increase the computation throughput of a CNN layer by
twice. On the network level (all convolution layers combined),
the performance improvement varies depending on the CNN
application and FPGA size, from 14% to more than 80% over
a highly optimized state-of-the-art accelerator solution, without
sacrificing the output quality significantly.

Index Terms—Convolutional neural network, FPGA, SIMD
(Single-Instruction Multiple-Data), reduced precision, DSP (Dig-
ital Signal Processing) block, MAC (Multiply-and-Accumulate).

I. INTRODUCTION

As machine learning algorithms are getting more popular,
there is an increasing demand for developing hardware ac-
celerators for them. In particular deep neural networks such
as Convolutional Neural Networks (CNNs) have multiple traits
that make them very attractive for hardware acceleration, such
as high structural regularity, high computational complexity,
and yet wide applicability and high recognition performance.
FPGAs are one of the most preferred platforms due to their
high flexibility and at the same time high parallelism. Hence
much effort has been made to create better CNN accelerators
on FPGAs [2]–[5].

A unique option available to hardware implementations of
DNNs is the flexibility in data width of arithmetic operations.
GP-GPUs, for instance, have long provided only two options—
either single-precision or double-precision floating point—
since integer arithmetic on modern GP-GPUs has zero or

A preliminary version of this paper appeared in [1].
This research was supported in part by Samsung Advanced Institute of

Technology, KIST Institutional Program (Project No. 2E27810-18-P034), and
Free Innovative Research Fund (1.180037.01) of UNIST, and in part by Nano-
Material Technology Development Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science, ICT and
Future Planning (2016M3A7B4909668).

negative performance advantage. Recently half-precision was
introduced on some select models [6], but this is a one-time
change and not cutomizable by user. By contrast an ASIC
(Application-Specific Integrated Circuit) implementation can
choose whatever precision sufficient for the target CNN appli-
cation. As recent work suggests that 8-bit fixed-point is often
enough for inference, even for deep CNNs [7], there is a good
opportunity to increase performance for free by using lower
precision without affecting output quality.

FPGAs, too, have the flexibility, and using reduced precision
means potentially higher throughput on the same FPGA.
In practice, however, since most arithmetic operations are
implemented using DSP blocks, and DSP blocks, too, support
only a limited set of precisions, it is not easy to achieve
higher performance through reduced arithmetic precision. For
example, the DSP block of Xilinx FPGAs, DSP48E1, can
perform a 25x18-bit multiplication only [8], and there is no
way to perform two 8x8-bit multiplications simultaneously on
the same DSP block for higher throughput.

This paper is about how to turn an ordinary DSP block of
an off-the-shelf FPGA device into a 2-way SIMD (Single-
Instruction Multiple-Data) MAC (Multiply-and-Accumulate)
unit, that can deliver 4 ops/cycle by performing two multiply-
and-add operations simultaneously with reduced data width.
Though we evaluate our technique for a Xilinx Virtex-7 FPGA
only, our method is generic and applicable to other FPGAs
with similar hardware DSP blocks. Our technique does not
require any change in the FPGA fabric itself.

Realizing SIMD add on a DSP unit is trivial and it is already
supported [8]. A SIMD multiply using LUTs (Look-Up Tables)
is also trivial. The challenge is how to realize SIMD multiply
on a DSP block of an FPGA. Using DSP blocks is important,
since most DNN implementations on FPGAs rely on DSP
blocks for MAC operations [2], and therefore being able to
perform two MACs using one DSP block essentially means
free 2X improvement in computation throughput. Further,
though it is possible to increase throughput by other means
(e.g., implementing additional MACs with LUTs [4]), our
method is orthogonal to them.

Without native SIMD multiplication support on DSP blocks,
we must create virtual SIMD lanes inside one DSP block,
making sure that data on each lane do not collide with each
other. We must also take care of sign bits and overflow
detection, all within one DSP block. Not only is this far from
straightforward, a simple analysis reveals that a general SIMD

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2824280, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

multiply on one DSP block is impossible without modifying
hardware. Our technique does not require any change in the
FPGA fabric itself, but uses additional resources such as LUTs
and FFs (Flip-Flops).

We make the following contributions in this paper. First
we define a special class of SIMD multipliers, tailored for
the kind of MAC operations found in convolutional layers
of CNNs (Convolutional Neural Networks). Specifically, our
Double MAC requires that the multiplications of a SIMD
multiply share a common operand, viz., A × C and B × C
instead of A×C and B×D, and that the common operand, C,
be an unsigned number. Second, with this restriction we show
that it is possible to design a 2-way SIMD multiplier-and-adder
within one DSP block with little overhead. Third, we demon-
strate that despite its inherent restrictions our Double MAC
architecture can be successfully incorporated into convolution
layers of a CNN accelerator if input activations are unsigned
numbers, which is typically the case as deep CNNs use the
ReLU (Rectified Linear Unit) activation function. Fourth, for
convolution layers whose input activations are signed numbers,
we present a method to convert convolution layers of signed
input into that of unsigned input. Finally, to compensate for
the reduction in arithmetic precision, we present a shift-only
(i.e., cost-free) scaling scheme for feature maps and weight
parameters, and demonstrate that our Double MAC based
CNN implementations can achieve high enough accuracy even
for large, real-life CNNs thanks to scaling.

In this paper we assume that only inference, as opposed
to training, of a CNN is done on an FPGA. We also assume
that the CNN accelerator accelerates convolution layers only,
which account for the vast majority of computation.

We validate our method through Verilog simulation and
FPGA synthesis, and evaluate our method by applying it to
one of the state-of-the-art CNN accelerator designs [2]. We
demonstrate that our Double MAC can double the computation
throughput at the MAC operation level, and also at the MAC
array level when given the same number of DSP blocks,
as compared to the previous state of the art. Our scheme
does use more LUTs, but is far more efficient in terms
of GOPS per LUT, as compared to synthesizing additional
MACs using LUTs (e.g., [4]). On the network level, i.e., with
all convolution layers combined, our method can generate
performance improvements that range, depending on the CNN
hyper-parameters and FPGA size, from 14% to more than
80% over the highly optimized state-of-the-art accelerators,
designed for two large, real-life CNNs [9], [10], without
sacrificing the output quality significantly, which is in part
thanks to our scaling scheme.

The rest of the paper is organized as follows. After briefly
reviewing related work and CNN accelerators in Section II,
we present our Double MAC architecture in Section III, and
its use in a state-of-the-art CNN accelerator in Section IV. We
present our experimental results in Section V and Section VI
concludes the paper.

II. BACKGROUND AND RELATED WORK

A. CNN Accelerator

Convolutional layers account for the majority of the com-
putation of a CNN evaluation. A convolutional layer takes
as input a number (N) of matrices called input feature
maps, and generates a number (M) of matrices called output
feature maps. The computation of each output feature map
(Ym) involves the summation of N 2D-convolutions between
each of the input feature maps (Xn) and each of the N
weight parameter matrices (Wm,n). Ignoring bias addition,
Ym =

∑N
n Wm,n ∗Xn, where ∗ represents convolution.

Naturally the repetitions along the M , N dimensions have
been the source of parallelism exploited by multiple hardware
accelerators recently [2], [11]. In particular, a very recent CNN
accelerator developed for FPGAs [2] is based on a 2D array
of multipliers and adders, as illustrated in Fig. 4(a). This
MAC array consumes TN inputs and generates TM outputs
simultaneously, and performs TNTM MAC operations per
cycle sweeping through the entire input feature maps and
output feature maps in a manner similar to loop tiling. Finding
the best values for TN and TM can be done trivially using an
exhaustive search, which may also consider other parameters
such as buffer size parameters to maximize data reuse, since in
general the input/output feature maps cannot fit in the on-chip
memory of an FPGA.

Our proposed Double MAC architecture is applicable to
other CNN accelerators as well. However, to demonstrate the
applicability of our technique and evaluate performance im-
provement in the most realistic setting, we use the accelerator
architecture of [2], with a small enhancement to maximize the
compute density.

B. Related Work

CNNs are known for their computational intensiveness,
and many accelerators have been proposed for ASIC [11]–
[13] as well as FPGA targets [2], [4], [5], [7], [14]. While
ASIC implementations generally have lower cost and higher
energy efficiency, they have no flexibility to support different
accelerator architectures. In addition to being flexible, FPGA
implementations also benefit from recent C-based design flows
such as high-level synthesis (e.g., [2]) and OpenCL (e.g., [7]),
which can help reduce time-to-market further. There are many
other accelerator architectures that are not specifically targeted
for one or the other (e.g., EIE [15]).

CNN accelerator architectures targeting FPGAs are typically
built around a MAC array, and depending on how the MAC ar-
ray is used to perform the computation of a convolution layer,
different architectures may exist. Specifically, the computation
of a convolution layer involves a number of MAC operations
arranged in a six-deep nested loop [16]—two for the input
feature map (N) and the output feature map (M), two for the
row/column of an image (let R and C denote the number of
rows and columns of an image), and two for the row/column
coefficients of the convolution filter. Previous work on CNN
accelerators explores different ways such as parallelizing along
M -N loops [2], [4], M -R loops [5], M -C loops [5], and
M -R-C loops [14]. A recent study provides a design space

2

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2824280, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

exploration methodology for different parallelization schemes
[16]. Our work is based on the parallelization along M -N
loops, which is the same as [2], [4].

Early work on CNN acceleration used floating-point preci-
sions (e.g., [2]), but recent designs use fixed-point precisions
(e.g., [4], [7]). For inference as opposed to training, even 8-bit
fixed-point is shown to be enough for some large CNNs [17].

Recently, reduced-precision CNN models have become a
topic of great interest due to their implementation-friendly
nature such as low power and low cost. For example, in
the IBM TrueNorth processor [18], weight parameters are
permitted to have one of four possible values. Authors in [19]
presents a learning method for TrueNorth. Researchers are
exploring even binarized neural networks (e.g., [20]) where
weight parameters are either 1, 0, or -1. Authors of [21]
attempt to analyze the impact of quantization in CNNs. A
slightly different approach is to use approximate multipliers
[22], [23].

On the other hand, our CNN accelerator is different from
approximate computing-based ones (e.g., [23]–[26]). Approx-
imate computing-based accelerators take advantage of the re-
silience of machine learning algorithms by using approximate
but more energy-efficient functional units such as approximate
adders and approximate multipliers, and thereby gain in cost
and energy efficiency. Our MAC array produces exact results
for the given input, and there is no truncation or rounding
introduced by our MAC array, which is why we can use Caffe
[27] to simulate our CNN accelerator.

There are several approaches that implement FPGA-based
SIMD processors [28]–[31]. Most of those processors consist
of an array of processing elements (PEs) that operates in a
SIMD fashion, thus different from our definition of SIMD,
which is really multi-word instruction. The work in [31]
proposes a 2D convolution processor which implements a
SIMD convolver. A 16-bit convolution operation is split into
two simultaneously 8-bit convolutions by operating on the
operands subwords. Our approach is completely different,
since we execute two simultaneous operations on a single
compute unit.

Our design supports two concurrent signed-unsigned mul-
tiplication with just one signed multiplier. Some correction
steps are required since the second lane of our Double MAC
is not able to recognize signed operation. A similar method
to achieve correct signed-signed multiplication with unsigned
multiplier is mentioned in [32].

III. OUR PROPOSED DOUBLE MAC ARCHITECTURE

We now present our double MAC architecture, which sup-
ports (i) SIMD multiplication and (ii) accumulation of many
multiplication results. First we see how SIMD multiplication
can be done using only one hardware multiplier in one cycle
for both unsigned and signed numbers, and then see how to
support accumulation of arbitrary number of operands.

A. SIMD Multiplication of Unsigned Numbers

Let us first consider the case where all the operands are
unsigned. Fig. 1 illustrates how a single multiplier can perform

A 00….00 B

C

A×C

B×C

A×C

B×C0

n bits n+1 bits n bits

2n bits 2n bits

guard bit

1001000001100

1101

1001000001100
0000000000000
1001000001100
1001000001100

1110101010011100

guard bit

(a) n-bit SIMD unsigned multiplier (b) Example: 9×13 & 12×13

×) ×)

Fig. 1: How 2-way SIMD multiplication works (unsigned
case).

two unsigned multiplications with a common operand simulta-
neously, i.e., A×C and B×C. For this to work, two conditions
must be satisfied. Let n be the width of each operand. First,
the output register must be at least 4n-bit wide. Second, the
two operands in one of the inputs must be separated by at
least n bits.

For accumulation to work without overflow, we need at
least one guard bit as illustrated in the figure. During the
accumulation the same guard bit can be used to detect any
carry out of the lower 2n bits. On detection, the carry bit
is cleared immediately and the number of carry-out events is
counted separately using a small counter. The value of the
counter is added separately once all accumulation is finished.
Thus to perform two n-bit multiplications in a SIMD fashion
we need one (3n + 1) × n-bit multiplier. For example, with
the 25x18-bit multiplier of a DSP48E in Xilinx FPGAs, n can
be at most 8.

B. SIMD Signed-Unsigned Multiplication

Let us consider how to perform a signed-unsigned multi-
plication using an unsigned multiplier. Let B = bn−1 · · · b1b0
be an n-bit signed integer, and C an n-bit unsigned integer.
Recalling −2n−1 = 2n−1 − 2n, the product B × C can be
computed as follows, where B̂ represents the value of B
interpreted as an unsigned number.

B × C = (−bn−1 · 2n−1 +
n−2∑
i=0

bi · 2i) · C

= (bn−1 · 2n−1 +
n−2∑
i=0

bi · 2i) · C − bn−1 · 2n · C

= B̂ · C − bn−1 · 2n · C

In other words, we can compute B × C by performing an
unsigned multiplication on B and C followed by a subtraction
of n-bit left-shifted C if B is negative.

Extending this to 2-way SIMD multiplication is straightfor-
ward. We can perform two n-bit signed-unsigned multiplica-
tions in a SIMD fashion by performing one (3n+ 1)× n-bit
unsigned multiplication, followed by at most two subtractions.

However we can reduce the number of subtractions to one
by performing a signed multiplication for the (3n + 1) × n-
bit multiplication. In this case the upper 2n-bit (i.e., A × C)

3

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2824280, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

1001000001100

1101×)
10100101010011100

–91
(correct)

156 or –100
both incorrect !

Correction

10011100

11010000

11001100

–52
correct !

-)

Correction indicator

Fig. 2: Example SIMD execution: −7× 13 and −4× 13.

X

+

α-bit

Counter

(n + α)-bit

Accumulator

A B

C

Guard bit

Correction

indicator = B[n – 1]

n

n n
M

M

M

DSP

α

n+α

n

-)

C1

OutA || OutB

OutA OutB

C2

C2

OutB

Corrected OutB

(a) (b)

C1

C1

OutA || OutB

Fig. 3: (a) Datapath of our Double MAC architecture, where
n = 8 and M = 48, and (b) how it works.

is already correct (there is no need for correction), and only
the lower 2n-bit needs a correction if B is negative, as
demonstrated by the example in Fig. 2.

The correction term could be added in-place if we do
just one multiply-add operation. For accumulation of a large
number of multiplication results, however, we must delay
doing the corrections until all accumulation is done because
we have only one guard bit.1 Instead the correction terms are
accumulated separately in a small accumulator, whose value
is later subtracted from the main accumulator. We determine
the size of extra accumulators in the next section.

C. Accumulation and Our Double MAC Architecture

Fig. 3 illustrates our Double MAC architecture. One DSP
block can implement both a 2-way SIMD multiplier and a 2-
way SIMD adder. Both the multiplier and the adder have a
correction output signal, which is shown as thin arrows in the
figure. The correction outputs are accumulated into a separate
register or counter to be used later for final adjustment.

In the final adjustment two terms need to be added/sub-
tracted. The adder-correction term C1, which comes from the
carry-out counter, has no overlap with the main accumulator
output, and thus can be just concatenated. Therefore we need
only one addition—the subtraction of the multiply-correction
term C2 from the concatenation result.

1Even if there are enough guard bits, the subtractor cannot be created inside
the DSP block, which precludes the possibility of in-place correction as a DSP
block has three operands only.

The width α of the carry-out counter is determined from
the number of values accumulated, V , as follows: α ≥
log2 V . In the case of our baseline CNN accelerator (see
Section II-A), V = (K2N/TN), thus α should be no less
than log2(K

2N/TN) for every layer of the CNN, where K
is the size of convolution filter in one dimension. Similarly
the width of the accumulator for multiplier correction terms
is n+ α.

The post-accumulation adjustment can be done easily by
using an extra adder of (n+ α)-bit width that resides outside
the DSP block. There is no runtime overhead due to this
adjustment, since the adjustment is done simultaneously while
new values are loaded into the MAC.

IV. CNN ACCELERATOR BASED ON OUR DOUBLE MAC

Our Double MAC is specialized in two ways: it shares one
operand and the shared operand is unsigned. We show how
to overcome these limitations as well as the precision issue in
the context of CNN accelerators.

A. Sufficiency of Shared-Operand SIMD Multiplier

As explained in Section II-A, our baseline accelerator has
TM outputs, performing at any given time one step of a
convolution between TN inputs and weight matrices. More
precisely, at any given cycle the MAC array in Fig. 4(a)
updates the (r, c)-element of TM output feature maps for a
certain iteration index (i, j) as follows.

Ym[r, c]← Ym[r, c] +

TN∑
n

Wm,n[i, j] ·Xn[r + i, c+ j] (1)

This is repeated K2 times while the index (i, j) iterates over
the size of the convolution filter, K×K. Omitting the indexes
we have a simpler form:

ym ← ym +

TN∑
n

wm,n · xn, (2)

where ym, wm,n, and xn are each an element of their
respective matrices.

Comparing the computations of two output feature maps at
the same image location, Ym[r, c] and Ym+1[r, c], we see that
only the weight parameters are different but the input values
are the same.

Ym+1[r, c]← Ym+1[r, c] +

TN∑
n

Wm+1,n[i, j] ·Xn[r+ i, c+ j]

(3)
This leads to our Double MAC array sharing input values as
follows, where “|” represents concatenation with an appropri-
ate number of zeros inbetween:

ym|ym+1 ← ym|ym+1 +

TN∑
n

wm,n|wm+1,n · xn (4)

The Double MAC array has the same number of input ports,
TN , but half the number of output ports, TM/2.

Another way to exploit our Double MAC array in a con-
volution layer is to pair neighboring features in the same

4

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2824280, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TN

in0

in1

in2

in3

X

DSP48

DSP48

DSP48

DSP48

X

X

X

+

+

+

w0
0

w0
1

w1
0 w1

1

w2
0 w2

1

w3
0 w3

1

{out0|out1}

Correction signal

X

DSP48

DSP48

DSP48

DSP48

X

X

X

+

+

+

w0
2

w0
3

w1
2 w1

3

w2
2 w2

3

w3
2 w3

3

{out2|out3}+

X

X

+
X

X

+

+X

X

+
X

X

+

+X

X

+
X

X

+

+X

X

+
X

X

+

+

TN

TM

out0

out1in0

in1

in2

in3

w0
0

w1
0

w2
0

w3
0

w0
1

w1
1

out2

out3

w1
2

w0
2

w0
3

w1
3

+

+

+

+

+

(a) (b)
Fig. 4: Computation engine of a CNN accelerator. (a) A MAC
array from [2] based on floating-point MACs and (b) our
modified version supporting our Double MACs.

output feature map. This works if the CNN accelerator applies
the MAC array along the R-direction (i.e., the output row
direction), such as those parallelizing along the M -R loops
[5]. Suppose our accelerator parallelizes along the M -R loops.
Then the MAC array would update TR elements of TM output
feature maps for a certain input feature map index n, a certain
output column index c, and a certain iteration index (i, j) as
follows.

Ym[r, c]← Ym[r, c] +Wm,n[i, j] ·Xn[r + i, c+ j] (5)

Again this is repeated K2 times while the index (i, j) iterates
over the size of the convolution filter. But unlike in the
previous case, this takes in only one input feature map, Xn,
and thus needs to be repeated N times, the number of input
feature maps. Omitting the indexes we can write

ym[r]← ym[r] + wm · x[r, c] (6)

Then our Double MAC array computes the following using
shared weight parameters.

ym[r]|ym[r+1]← ym[r]|ym[r+1]+wm·x[r, c]|x[r+1, c] (7)

Similarly, the Double MAC array can be applied to accel-
erators parallelizing along the M -C loops [5] and along the
M -R-C loops [14]. In the remainder of this paper we assume
that the accelerator parallelizes along the M -N loops like [2],
[4].

B. Computation Engine: Double-MAC Array

Fig. 4 illustrates the architecture of our Double-MAC array,
contrasting it with that of the original MAC array in [2]. In
the original MAC array 5 DSP blocks are used to implement a
pair of multiplier and adder, as they use 32-bit floating-point

precision. We maximize the compute density by using 16-
bit and 8-bit fixed-point precision, which can be implemented
with just 1 DSP block, with one caveat: in the 1 DSP-per-MAC
case, about half of the adders in the adder tree cannot share
a DSP block with a multiplier. This is because a DSP block
can take up to three operands, and therefore cannot support
A × B and C + D unless they are chained. The unmatched
adders need DSP blocks of their own, significantly decreasing
resource utilization, or require many LUTs to implement.

Instead our MAC array uses a pipelined adder cascade. This
way, adders can always be matched with multipliers. Further
since we are not using adder tree, our MAC array can support
any TN values that may not be 2k. We use this enhanced
version as the baseline for our evaluation in Section V.

As mentioned, the SIMD multipliers in our MAC array
perform signed-unsigned multiplications, with input feature
maps having unsigned values. This naturally fits with CNNs
with ReLU (Rectified Linear Unit) activation layers, which
produce non-negative outputs, to be used as input for the
following layer. Next we discuss how to convert input/output
feature map values to unsigned numbers.

C. Conversion into Unipolar-Input CNN

An arbitrary convolutional layer can be converted into
an equivalent unipolar-input CNN, which is one that has
unsigned, nor non-negative, values in all its input feature maps.
The conversion is surprisingly simple, and can be done off-
line after training by adjusting bias values. There is very little
runtime overhead.

The computation of a convolutional layer, including bias bm,
can be represented as Ym + bmJ =

∑N
n Wm,n ∗Xn + bmJ ,

where J is a matrix of ones. Suppose that the input feature
map Xn is a matrix of k-bit signed fixed-point numbers,
whose range is [−2k−1, 2k−1 − 1]. We define an unsigned
input feature map X ′n as follows.

X ′n = Xn + 2k−1J (8)

Then we can find the new bias values b′m from the requirement
that the new outputs generated from using the unsigned input
feature maps must equal the original outputs.

Ym + bmJ =
N∑
n

Wm,n ∗X ′n + b′mJ

=
N∑
n

Wm,n ∗ (Xn + 2k−1J) + b′mJ

= Ym +
N∑
n

Wm,n ∗ 2k−1J + b′mJ

Thus b′m = bm − 2k−1
∑N

n

∑
i,j Wm,n[i, j].

This bias adjustment can be done off-line and therefore
incurs no runtime overhead. The only overhead at runtime is
the conversion of signed input into unsigned for (8), which is
simply to flip the MSB of Xn (and interpreting it as unsigned
value) and can be done using one invertor.

5

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2824280, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

D. Improving Accuracy with Shift-only Scaling Scheme
One important concern for a reduced-precision scheme such

as ours is that it may result in lower accuracy in the application
output. In this section we analyze the precision impact of our
Double MAC architecture and present a very low-cost scheme
to mitigate the impact.

Recall that all three operands (i.e., two multiplicands and
one common multiplier) of a Double MAC have 8-bit precision
but the output has (16 + α)-bit (lower word) and 31-bit
(= 48 − 17, upper word) precision. These output precisions
should be enough for DNN applications. Post-MAC steps such
as max-pooling, normalization, and activation function are
independent of our Double MAC and therefore outside of our
consideration. Also, unlike approximate addition/multiplica-
tion approaches [24], our Double MAC architecture is exact
for the given operands, and there is no accuracy loss inside.
Thus the only loss of accuracy by our architecture is caused
by the truncation (or rounding) of input operands, which come
from input feature maps (including the primary input for the
first layer) and weight parameters.

In other words, while the correct output, Y , is given by
Yi =

∑
WijXj +Bi (where B is the bias value), our Double

MAC architecture can only compute Y ′i =
∑

[Wij][Xj]+[Bi],
where [·] represents an 8-bit quantization operation whether by
truncation or rounding.

Thus to mitigate the loss of accuracy due to quantization
we use scaling. In particular we pre-scale both input feature
maps and weight parameters (including bias), and later scale
the output back after all accumulation is finished. The scaling
factor can be set differently for different layers. Let sx and
sw be the scaling factors for input feature maps and weight
parameters, respectively, of a certain layer. Then the scaled
versions are obtained as follows.

X ′ = sxX and W ′ = swW (9)

By scaling B (bias) and MAC output by sxsw and 1/(sxsw),
respectively, we can bring the MAC output back its original
range.

Y ′i =
(∑

[swWij][sxXj] + [sxswBi]
)
/(sxsw) (10)

=
∑

[swWij]/sw · [sxXj]/sx + [sxswBi]/(sxsw) (11)

From (11) we can see that scaling can help reduce quanti-
zation error by shifting the input range. But scaling may incur
runtime overhead due to the multiplication of X by sx in
(9) and that of the accumulation result by 1/(sxsw) in (10).
Therefore, to get multiplier-free scaling we must use a power
of 2 value for both sx and sw. Weight parameters and bias
values can be scaled off-line, which incurs no runtime cost.

Parameters sx and sw are per-layer parameters, whose
values are determined through profiling. We determine these
parameters such that P ' 0.99, where P is the probability of
scaled values being within the range of 8-bit precision, which
may be [-128, 127] for signed values and [0, 255] for unsigned
values.2 From profiling we know the exact distribution of the

2One may use different ranges than shown here, but what is important is
to use the same ranges for different layers.

TABLE I: Resource requirements of different data precisions

Data type DSP LUT FF
Floating-point 32-bit [2] 5 349 355
Fixed-point 32-bit [2] 4 0 0
Fixed-point 16-bit 1 0 0
Fixed-point 8-bit 1 0 0
Fixed-point 8-bit, Double MAC 0.5 11 12

input data and therefore can find the best scaling parameters.
Or one can simply use the first-order statistics assuming that
the input data follow a normal distribution. Then the scaling
parameter can be calculated as 128/(µ+3σ) for signed data or
256/(µ+3σ) for unsigned data, where µ and σ are the mean
and standard deviation, respectively. We round the scaling
parameter to the nearest power of 2.

V. EXPERIMENTS

A. Experimental Setup

We apply our technique to the convolution layers of two
real-life CNNs: AlexNet [9] and VGG [10]. AlexNet consists
of 8 layers, including 5 convolution layers. There are several
configurations of VGG, in this paper we use the configuration
that has 16 layers, including 13 convolution layers. Both
networks use the ReLU activation function. Our baseline CNN
accelerator is from [2] with an adder cascade enhancement as
described in Section IV. The accelerator performs MAC oper-
ations only, which accounts for the majority of computation.

We have extended the Caffe framework [27] to obtain
testbench data for RTL validation as well as to measure the
output quality of limited-precision networks. To simulate the
fixed-point behavior of the convolutional layer we have added
a quantization layer before every convolutional layer. The
output of convolutional layers is used to generate test vectors.
The configuration for n-bit fixed-point is (n, 0), which means
all n bits are dedicated for the integer part (including sign bit)
and none is assigned for the fractional part, as we find that
this configuration gives the best recognition performance. Our
accuracy analysis is done with n ranging from 4 to 11.

For our performance comparison we set the clock frequency
to 280MHz, which agrees with our synthesis results, and the
memory bandwidth to 9 GB/s based on our RTL simulation.

B. Synthesis Results

Table I compares the resource requirements of one MAC
unit for different precisions. The data for floating point and
32-bit fixed-point are from [2], shown here for comparison.

We have implemented our Double MAC array in Verilog
RTL and validated its functionality using Vivado simulator.
The MAC array is synthesized using Vivado 2015.2 targeting
the Xilinx Virtex7 485T FPGA, which has 2,800 DSP blocks.
The MAC array has two key parameters, TM and TN , also
called tile parameters, that impact the throughput of the accel-
erator. Their optimal values, shown in Table II, are found using
exhaustive search for AlexNet. As expected, with the same
level of DSP utilization our SIMD architecture can implement
a MAC array twice large than the non-SIMD version.

6

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2824280, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

The table also reports the area and maximum frequency
of the synthesized circuit. Though our Double MAC array
consumes more LUT and FF, which is due to the correction
circuit, the additional resource usage is not high. On the other
hand, being able to turn the extra resources into performance
improvement can be an advantage, especially when the re-
sources are typically underutilized in CNN accelerators unless
a floating point data type is used (see the table).

C. Comparison Against Using LUTs

One downside of our Double MAC is a higher usage in
terms of LUTs and FFs (Flip-Flops). Particularly since one can
synthesize additionals MACs using the extra LUTs and FFs,
comparing it with our scheme is very interesting. We compare
8-bit fixed case with and without our Double MAC scheme.
For the baseline case we synthesize additional MACs using
LUTs so that we can compare the two cases under the iso-
resource condition. In particular, we use the array size of (TM ,
TN) = (64, 64) for the Double MAC case. For the baseline
case, the subarray of size (TM , TN) = (32, 64) is implemented
using DSP blocks, but extra rows of MACs along the TM
direction are implemented using LUTs. In all cases the DSP
utilization is exactly the same.

Fig. 5 shows the results. For the 8-bit fixed case, the number
of extra rows is varied from 0, 2, 4, 8, 16, and 32. One can
see from the graphs that there is an almost linear relationship
between the number of extra rows of MACs and the additional
LUT/FF required. Thus in order to realize 2× speedup in the
8-bit fixed case, one needs to utilize about 89% LUT and 22%
FF. On the other hand, our scheme uses only a very small
amount of additional resource that is similar to that of 2 extra
rows for the 8-bit fixed case, i.e., (TM , TN) = (32+2, 64). Put
in another way, using the same level of additional LUT/FF
resources, ours can generate 2× speedup, or 100% higher
performance without any adverse effect, whereas naı̈vely using
LUTs and FFs can generate only about 6% (= 32 vs 34 rows)
higher performance, which clearly demonstrates the advantage
of our scheme.

D. Performance Scalability

Fig. 6 shows how the performance of two CNNs (AlexNet
and VGG) on the two CNN accelerators (8-bit fixed-point
baseline vs. our Double-MAC array) varies as the number of
DSPs is changed. Other conditions such as memory bandwidth
are kept unchanged. The number-of-DSPs value is taken from
the DSP counts of existing Xilinx FPGA devices [33].

We first observe that different CNNs have very different
performance scaling patterns. VGG’s performance on the
baseline array scales almost linearly as the number of DSPs
increases whereas AlexNet’s performance is nearly saturated
at around 400 GOPS. Consequently when our Double MAC
is applied, the performance improvement by our scheme is
drastically different between the two applications. While our
Double MAC achieves significant speedup on VGG (84%),
its performance with AlexNet is not as impressive (14%).
Nonetheless, we observe a common pattern that our Double
MAC array can achieve the performance level of the baseline

0
2

4
8

16

32

0

20

40

60

80

100

5 10 15 20

L
U

T
 U

sa
g
e

(%
)

Performance (GOPS)

8b-fixed 8b-fixed-D

(a) LUT usage

0

2 4
8

16

32

0

5

10

15

20

25

5 10 15 20

F
F

 U
sa

g
e

(%
)

Performance (GOPS)

8b-fixed 8b-fixed-D

(b) FF usage

Fig. 5: Comparison against using LUTs for additional MACs.
In the case of 8b-Fix, the number on the left side of the marks
represents the number of extra rows of MACs.

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000

P
e

rf
o

rm
a

n
c
e

 (
G

O
P

S
)

Number of DSPs

AlexNet, 8b-fixed

AlexNet, 8b-fixed-D

VGG, 8b-fixed

VGG, 8b-fixed-D

Fig. 6: Performance vs. Number of DSPs.

at twice the number of DSPs. In other words our Double MAC
array can successfully double the effective number of DSPs
for both CNNs, even when judged by the computation rate
improvement.

E. Detailed Performance Analysis

To understand the difference between the two CNNs we
analyze the runtime at the layer level. Table III and Table IV
compare the run time of each convolutional layer of AlexNet
and VGG, respectively. We also show the ratio of 16-bit and
8-bit fixed-point implementation over our method in terms of
runtime, power and energy. Both applications run on Virtex7
485T FPGA (the DSP count is 2,800 but limited to 80% usage
limit). The tile parameters suggest that our Double MAC array

7

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2824280, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TABLE II: Synthesis results for optimal tile parameters

AlexNet VGG
32b-float [2] 16b-Fix 8b-Fix 8b-Fix-D 16b-Fix 8b-Fix 8b-Fix-D

Optimal (TM , TN) (7, 64) (11, 192) (32, 64) (64, 64) (64, 35) (35, 64) (64, 64)
Max frequency (MHz) 280 280 280 280 280 280 280
DSP usage (%) (*) 80 75 73 73 80 80 73
LUT usage (%) 61.30 0.39 1.12 16.98 2.08 1.23 16.98
FF usage (%) 33.87 0.11 0.32 8.88 0.56 0.35 8.88
BRAM (KB) 4608 656 343 369 1295 1248 1632

*Note: DSP usage is limited to 80% as in the previous work [2].

TABLE III: AlexNet performance comparison (unit: ms, W, J)

Layer GOP 16b-Fix 8b-Fix 8b-Fix-D Ratio
L1 0.21 1.31 1.31 1.31 1.00 1.00
L2 0.45 0.33 0.26 0.13 2.50 2.00
L3 0.30 0.13 0.13 0.08 1.54 1.54
L4 0.22 0.10 0.10 0.06 1.54 1.54
L5 0.15 0.10 0.07 0.04 2.23 1.49
Total 1.33 1.96 1.86 1.63 1.20 1.14
Power 4.81 4.35 5.78 0.83 0.75
Energy 9.43 8.10 9.42 1.00 0.86
(TM , TN) (11, 192) (32, 64) (64, 64)

TABLE IV: VGG performance comparison (unit: ms, W, J)

Layer GOP 16b-Fix 8b-Fix 8b-Fix-D Ratio
L1 0.17 3.23 1.61 1.61 2.00 1.00
L2 3.70 3.23 3.23 1.61 2.00 2.00
L3 1.85 1.61 1.61 0.81 2.00 2.00
L4 3.70 3.23 3.23 1.61 2.00 2.00
L5 1.85 1.61 1.61 0.81 2.00 2.00
L6 3.70 3.23 3.23 1.61 2.00 2.00
L7 3.70 3.23 3.23 1.61 2.00 2.00
L8 7.40 1.51 1.61 0.81 1.88 2.00
L9 3.70 3.02 3.02 1.61 1.88 1.88
L10 3.70 3.02 3.02 1.61 1.88 1.88
L11 3.70 0.93 0.76 0.46 2.05 1.66
L12 3.70 0.93 0.76 0.46 2.05 1.66
L13 0.92 0.93 0.76 0.46 2.05 1.66
Total 41.79 29.71 27.67 15.07 1.97 1.84
Power 5.93 5.81 7.85 0.75 0.74
Energy 176.16 160.79 118.39 1.49 1.36
(TM , TN) (64, 35) (35, 64) (64, 64)

has exactly twice the number of MAC units than that of the
baseline. Thus it is possible to achieve 2× speedup, which is
what we see in many layers.

However in the first layer, the speedup over the 8-bit fixed-
point implementation is zero with either application. This is
because in those layers only some MAC units are actually
utilized due to smaller layer size compared with tile size. In
the AlexNet, for instance, the first layer has layer parameters
M = 64 and N = 3, but the tile parameters found are TM =
64 and TN = 64, which means that, for N , 61 out of 64 MACs
are not utilized during the first layer. Because of this, the first
layer receives no benefit from the increased MAC array size
of our Double MAC. To make matters worse L1 dominates the
AlexNet’s runtime, dragging down the overall speedup. VGG
has the same issue in the first layer (having M = 64, N = 3)
but the first layer is not as dominant.

On the other hand, the first layer’s performance can be
changed by the choice of unroll dimensions (tile dimensions)
when designing the MAC array. If one chooses, for instance, R
and C loops [34] instead of M and N , the first layer will scale
much better. In fact R and C have the highest values in the

0

20

40

60

80

100

11 10 9 8 7 6 5 4

Q
u

al
it

y
 (

%
)

Data width (bit)

AlexNet

VGG

(a) Before scaling

0

20

40

60

80

100

11 10 9 8 7 6 5 4

Q
u

al
it

y
 (

%
)

Data width (bit)

AlexNet

VGG

(b) After scaling

Fig. 7: Relative quality with various bit-widths of AlexNet
and VGG, with and without scaling. Quantization is applied
to convolution layers only.

first layer, so doubling tile parameters may directly translate
into increased performance.

Another point is the speedup varies layer by layer. This is
because the tile parameters are sub-optimal for some layers,
causing either under-utilization or fragmentation. Such erratic
behavior also explains why we see a nonlinear curve in the
VGG-SIMD case in Fig. 6.

We also estimate FPGA power dissipation using Xilinx
Power Estimator [35] with numbers obtained from our synthe-
sis report. Since our method uses extra resources to implement
the correction circuit, our power dissipation is higher than that
of the baseline. In case of AlexNet, the runtime improve-
ment achieved by our method is not enough to compensate
for higher power, resulting in higher energy consumption.
However, in case of VGG, since our Double MAC array
executes significantly faster than the baseline, it achieves
about 33% energy reduction compared to the 8-bit fixed-point
implementation.

8

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2824280, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

F. Accuracy and Effect of Scaling

Fig. 7 shows the output quality (i.e., our top-5 accuracy
divided by that of the floating-point implementation) of our
quantized version as we vary the precision from 4-bit through
11-bit, with and without our scaling optimization. We use the
entire validation set of ILSVRC-2012.

For this experiment we run the entire network on Caffe, and
fixed-point quantization is applied only in front of convolution
layers (for input feature map and weight parameter data). Scale
values are all powers of 2, so that free scaling-back is possible.

Our results reveal that despite their large sizes, both CNNs
are surprisingly resilient up to a certain precision, beyond
which the quality starts to quickly deteriorate. Our scaling
optimization can delay this quality degradation by at least
1 or 2 bits as shown in the graphs. Also it is worth noting
that the quality degradation at 8-bit quantization, which is the
precision used in our SIMD evaluation, is quite low (less than
1% when quantization is applied to convolution layers only),
which agrees with earlier results (e.g., [7]) that show very low
accuracy degradation up to 8-bit quantization on AlexNet and
VGG.

VI. CONCLUSION

We presented how to increase the computation rate of CNN
accelerators on FPGAs by packing multiple MAC operations
into one DSP blocks of off-the-shelf FPGAs. By exploiting the
context in which MAC operations are used, our method can
strike a good balance between usability and implementation
overhead. We have validated our proposed architecture through
Verilog simulation and FPGA synthesis, and evaluated it
using a state-of-the-art CNN accelerator, which shows that
our Double MAC can increase computation throughput of a
CNN layer often by twice, and achieve signficant performance
improvements on the network level ranging from 14% to
more than 80% over an already optimized accelerator solution
depending on the hyper-parameters of the CNN and the FPGA
size. All these are done without sacrificing the output quality
significantly. This improvement in performance can directly
translate into energy saving, which can make accelerator solu-
tions even more appealing as compared to GP-GPU solutions.

REFERENCES

[1] D. Nguyen, D. Kim, and J. Lee, “Double MAC: Doubling the perfor-
mance of convolutional neural networks on modern FPGAs,” in Design,
Automation and Test in Europe (DATE ’17), Mar. 2017.

[2] C. Zhang et al., “Optimizing FPGA-based accelerator design for deep
convolutional neural networks,” in Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, ser.
FPGA ’15. New York, NY, USA: ACM, 2015, pp. 161–170.

[3] S. Cadambi et al., “A programmable parallel accelerator for learning
and classification,” in Proceedings of the 19th International Conference
on Parallel Architectures and Compilation Techniques, ser. PACT ’10.
New York, NY, USA: ACM, 2010, pp. 273–284.

[4] J. Qiu et al., “Going deeper with embedded fpga platform for con-
volutional neural network,” in Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, ser.
FPGA ’16. New York, NY, USA: ACM, 2016, pp. 26–35.

[5] M. Peemen et al., “Memory-centric accelerator design for convolutional
neural networks,” in Computer Design (ICCD), 2013 IEEE 31st Inter-
national Conference on, Oct 2013, pp. 13–19.

[6] Nvidia Tesla P100, Nvidia, available at
http://www.nvidia.com/object/tesla-p100.html (last accessed May
4, 2017).

[7] N. Suda et al., “Throughput-optimized opencl-based fpga accelerator
for large-scale convolutional neural networks,” in Proceedings of the
2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’16. New York, NY, USA: ACM, 2016, pp.
16–25.

[8] “7 series DSP48E1 slice user guide,” Xilinx, User Guide UG479, Sep.
2016.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks.” in NIPS, P. L. Bartlett et al.,
Eds., 2012, pp. 1106–1114.

[10] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” vol. abs/1409.1556, 2014.

[11] Y. Chen et al., “DaDianNao: A machine-learning supercomputer,” in
Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-47. Washington, DC, USA: IEEE
Computer Society, 2014, pp. 609–622.

[12] Chen, Yu-Hsin and Krishna, Tushar and Emer, Joel and Sze, Vivienne,
“Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Con-
volutional Neural Networks,” in IEEE International Solid-State Circuits
Conference, ISSCC 2016, Digest of Technical Papers, 2016, pp. 262–
263.

[13] K. Bong et al., “14.6 a 0.62mw ultra-low-power convolutional-neural-
network face-recognition processor and a CIS integrated with always-on
haar-like face detector,” in 2017 IEEE International Solid-State Circuits
Conference (ISSCC), Feb 2017, pp. 248–249.

[14] A. Rahman, J. Lee, and K. Choi, “Efficient fpga acceleration of con-
volutional neural networks using logical-3d compute array,” in Design,
Automation and Test in Europe (DATE ’16), Mar. 2016.

[15] S. Han et al., “Eie: Efficient inference engine on compressed deep neural
network,” SIGARCH Comput. Archit. News, vol. 44, pp. 243–254, Jun.
2016.

[16] A. Rahman et al., “Design space exploration of FPGA accelerators
for convolutional neural networks,” in Design, Automation and Test in
Europe (DATE ’17), Mar. 2017, pp. 1147–1152.

[17] S. Gupta et al., “Deep learning with limited numerical precision,” CoRR,
vol. abs/1502.02551, 2015.

[18] P. A. Merolla et al., “A million spiking-neuron integrated circuit with a
scalable communication network and interface,” Science, vol. 345, pp.
668–673, 2014.

[19] W. Wen et al., “A new learning method for inference accuracy, core
occupation, and performance co-optimization on truenorth chip,” in
Proceedings of the 53rd Annual Design Automation Conference, ser.
DAC ’16. New York, NY, USA: ACM, 2016, pp. 18:1–18:6.

[20] M. Courbariaux, Y. Bengio, and J. David, “Binaryconnect: Training deep
neural networks with binary weights during propagations,” CoRR, vol.
abs/1511.00363, 2015.

[21] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed point quan-
tization of deep convolutional networks,” CoRR, vol. abs/1511.06393,
2015.

[22] S. Venkataramani et al., “Axnn: Energy-efficient neuromorphic systems
using approximate computing,” in Low Power Electronics and Design
(ISLPED), 2014 IEEE/ACM International Symposium on, Aug 2014, pp.
27–32.

[23] Q. Zhang et al., “Approxann: An approximate computing framework
for artificial neural network,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2015, March 2015, pp. 701–706.

[24] S. S. Sarwar et al., “Multiplier-less artificial neurons exploiting error
resiliency for energy-efficient neural computing,” in Proceedings of the
2016 Conference on Design, Automation & Test in Europe, ser. DATE
’16. San Jose, CA, USA: EDA Consortium, 2016, pp. 145–150.

[25] K. Kim et al., “Dynamic energy-accuracy trade-off using stochastic
computing in deep neural networks,” in 53rd Annual ACM/IEEE Design
Automation Conference (DAC ’16), Jun. 2016.

[26] H. Sim and J. Lee, “A new stochastic computing multiplier with
application to deep convolutional neural networks,” in 54th Annual
ACM/IEEE Design Automation Conference (DAC ’17), Jun. 2017, pp.
29:1–29:6.

[27] Y. Jia et al., “Caffe: Convolutional architecture for fast feature embed-
ding,” arXiv preprint arXiv:1408.5093, 2014.

[28] J. Cho, H. Chang, and W. Sung, “An FPGA based SIMD processor with
a vector memory unit,” in Circuits and Systems, 2006. ISCAS 2006.
Proceedings. 2006 IEEE International Symposium on, May 2006.

9

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2824280, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

[29] B. Mahmood and M. Al Jbaar, “Design and implementation of simd
vector processor on fpga,” in Innovation in Information Communication
Technology (ISIICT), 2011 Fourth International Symposium on, Nov
2011, pp. 124–130.

[30] P. Bonnot et al., “Definition and SIMD implementation of a multi-
processing architecture approach on FPGA,” in Design, Automation and
Test in Europe, 2008. DATE ’08, March 2008, pp. 610–615.

[31] S. Perri et al., “A high-performance fully reconfigurable FPGA-based
2-D convolution processor,” in Microprocess. Microsyst., vol. 29, 2005,
pp. 381–391.

[32] S. Grys, “Signed multiplication technique by means of unsigned multiply
instruction,” Comput. Electr. Eng., vol. 37, pp. 1212–1221, Nov. 2011.

[33] “7 series FPGAs data sheet: Overview,” Xilinx, Data Sheet DS180, Mar.
2017.

[34] C. Farabet et al., “Cnp: An fpga-based processor for convolutional
networks,” in Field Programmable Logic and Applications, 2009. FPL
2009. International Conference on, Aug 2009, pp. 32–37.

[35] “Xilinx power estimator user guide,” Xilinx Inc., User Guide UG440
(v2015.3), Sep. 2015.

Sugil Lee received the B.S. degree in mathematical
science from Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, Korea, in 2017.
He is currently a master’s student in department
of computer science and engineering in Ulsan Na-
tional Institute of Science and Technology (UNIST),
Ulsan, Korea. His research interests include deep
neural networks, natural language processing, and
automatic speech recognition.

Daewoo Kim received the B.S. degree in computer
science from University of Ulsan, Ulsan, Korea,
in 2015. He is currently a master’s student in de-
partment of computer science and engineering in
Ulsan National Institute of Science and Technol-
ogy (UNIST), Ulsan, Korea. His research inter-
ests include processor design, accelerator design for
emerging application such as deep learning, and high
level synthesis.

Dong Nguyen received the M.S. degree at Ulsan Na-
tional Institute of Science and Technology (UNIST),
Ulsan, South Korea in 2016. His research interests
include parallel programming and deep learning
on accelerator platform such as GPU and FPGA.
Currently he is a senior software engineer at Robert
Bosch Engineering Vietnam and is responsible for
developing embedded software for automotive con-
trol units.

Jongeun Lee (M’01) received the B.S. and M.S.
degrees in electrical engineering and the Ph.D. de-
gree in electrical engineering and computer science
all from Seoul National University, Seoul, Korea, in
1997, 1999, and 2004, respectively. Since 2009 he
has been on the faculty of UNIST, Korea, in the
school of electrical and computer engineering. His
research interests include architectures and compiler
for reconfigurable architectures, and deep learning
acceleration.

10

